3.4.15 \(\int \frac {1}{(a+b \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx\) [315]

3.4.15.1 Optimal result
3.4.15.2 Mathematica [C] (warning: unable to verify)
3.4.15.3 Rubi [A] (warning: unable to verify)
3.4.15.4 Maple [B] (warning: unable to verify)
3.4.15.5 Fricas [F(-1)]
3.4.15.6 Sympy [F]
3.4.15.7 Maxima [F]
3.4.15.8 Giac [F]
3.4.15.9 Mupad [F(-1)]

3.4.15.1 Optimal result

Integrand size = 25, antiderivative size = 422 \[ \int \frac {1}{(a+b \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d \sqrt {e}}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {e \tan (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} a d \sqrt {e}}-\frac {\log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)-\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d \sqrt {e}}+\frac {\log \left (\sqrt {e}+\sqrt {e} \tan (c+d x)+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{2 \sqrt {2} a d \sqrt {e}}-\frac {2 \sqrt {2} b \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {1+\sin (c+d x)}}\right ),-1\right ) \sqrt {\sin (c+d x)}}{a \sqrt {a^2-b^2} d \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}+\frac {2 \sqrt {2} b \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {1+\sin (c+d x)}}\right ),-1\right ) \sqrt {\sin (c+d x)}}{a \sqrt {a^2-b^2} d \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}} \]

output
-1/2*arctan(1-2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/a/d*2^(1/2)/e^(1/2)+1/ 
2*arctan(1+2^(1/2)*(e*tan(d*x+c))^(1/2)/e^(1/2))/a/d*2^(1/2)/e^(1/2)-1/4*l 
n(e^(1/2)-2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/a/d*2^(1/2)/e^( 
1/2)+1/4*ln(e^(1/2)+2^(1/2)*(e*tan(d*x+c))^(1/2)+e^(1/2)*tan(d*x+c))/a/d*2 
^(1/2)/e^(1/2)-2*b*EllipticPi((-cos(d*x+c))^(1/2)/(1+sin(d*x+c))^(1/2),b/( 
a-(a^2-b^2)^(1/2)),I)*2^(1/2)*sin(d*x+c)^(1/2)/a/d/(a^2-b^2)^(1/2)/(-cos(d 
*x+c))^(1/2)/(e*tan(d*x+c))^(1/2)+2*b*EllipticPi((-cos(d*x+c))^(1/2)/(1+si 
n(d*x+c))^(1/2),b/(a+(a^2-b^2)^(1/2)),I)*2^(1/2)*sin(d*x+c)^(1/2)/a/d/(a^2 
-b^2)^(1/2)/(-cos(d*x+c))^(1/2)/(e*tan(d*x+c))^(1/2)
 
3.4.15.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 38.30 (sec) , antiderivative size = 1475, normalized size of antiderivative = 3.50 \[ \int \frac {1}{(a+b \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx =\text {Too large to display} \]

input
Integrate[1/((a + b*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]]),x]
 
output
((b + a*Cos[c + d*x])*Sec[c + d*x]*Sqrt[Tan[c + d*x]]*((2*Sec[c + d*x]^3*( 
a + b*Sqrt[1 + Tan[c + d*x]^2])*(((-1/8 + I/8)*a*(2*ArcTan[1 - ((1 + I)*Sq 
rt[b]*Sqrt[Tan[c + d*x]])/(a^2 - b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[ 
b]*Sqrt[Tan[c + d*x]])/(a^2 - b^2)^(1/4)] + Log[Sqrt[a^2 - b^2] - (1 + I)* 
Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Tan[c + d*x]] + I*b*Tan[c + d*x]] - Log[Sqr 
t[a^2 - b^2] + (1 + I)*Sqrt[b]*(a^2 - b^2)^(1/4)*Sqrt[Tan[c + d*x]] + I*b* 
Tan[c + d*x]]))/(Sqrt[b]*(a^2 - b^2)^(3/4)) + (5*b*(-a^2 + b^2)*AppellF1[1 
/4, -1/2, 1, 5/4, -Tan[c + d*x]^2, (b^2*Tan[c + d*x]^2)/(a^2 - b^2)]*Sqrt[ 
Tan[c + d*x]]*Sqrt[1 + Tan[c + d*x]^2])/((5*(a^2 - b^2)*AppellF1[1/4, -1/2 
, 1, 5/4, -Tan[c + d*x]^2, (b^2*Tan[c + d*x]^2)/(a^2 - b^2)] + 2*(2*b^2*Ap 
pellF1[5/4, -1/2, 2, 9/4, -Tan[c + d*x]^2, (b^2*Tan[c + d*x]^2)/(a^2 - b^2 
)] + (a^2 - b^2)*AppellF1[5/4, 1/2, 1, 9/4, -Tan[c + d*x]^2, (b^2*Tan[c + 
d*x]^2)/(a^2 - b^2)])*Tan[c + d*x]^2)*(a^2 - b^2*(1 + Tan[c + d*x]^2)))))/ 
((b + a*Cos[c + d*x])*(1 + Tan[c + d*x]^2)^2) + (Cos[2*(c + d*x)]*Sec[c + 
d*x]^3*(a + b*Sqrt[1 + Tan[c + d*x]^2])*((-20*Sqrt[2]*ArcTan[1 - Sqrt[2]*S 
qrt[Tan[c + d*x]]])/a + (20*Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] 
)/a + ((10 - 10*I)*(a^2 - 2*b^2)*ArcTan[1 - ((1 + I)*Sqrt[b]*Sqrt[Tan[c + 
d*x]])/(a^2 - b^2)^(1/4)])/(a*Sqrt[b]*(a^2 - b^2)^(3/4)) - ((10 - 10*I)*(a 
^2 - 2*b^2)*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Tan[c + d*x]])/(a^2 - b^2)^(1 
/4)])/(a*Sqrt[b]*(a^2 - b^2)^(3/4)) - (10*Sqrt[2]*Log[1 - Sqrt[2]*Sqrt[...
 
3.4.15.3 Rubi [A] (warning: unable to verify)

Time = 1.24 (sec) , antiderivative size = 412, normalized size of antiderivative = 0.98, number of steps used = 22, number of rules used = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.840, Rules used = {3042, 4380, 3042, 3212, 3042, 3208, 3042, 3386, 25, 1537, 412, 3957, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt {e \tan (c+d x)} (a+b \sec (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sqrt {-e \cot \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 4380

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \tan (c+d x)}}dx}{a}-\frac {b \int \frac {1}{(b+a \cos (c+d x)) \sqrt {e \tan (c+d x)}}dx}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \tan (c+d x)}}dx}{a}-\frac {b \int \frac {1}{\sqrt {-e \cot \left (c+d x+\frac {\pi }{2}\right )} \left (b+a \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}\)

\(\Big \downarrow \) 3212

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \tan (c+d x)}}dx}{a}-\frac {b \int \frac {\sqrt {e \cot (c+d x)}}{b+a \cos (c+d x)}dx}{a \sqrt {e \tan (c+d x)} \sqrt {e \cot (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \tan (c+d x)}}dx}{a}-\frac {b \int \frac {\sqrt {-e \tan \left (c+d x-\frac {\pi }{2}\right )}}{b-a \sin \left (c+d x-\frac {\pi }{2}\right )}dx}{a \sqrt {e \tan (c+d x)} \sqrt {e \cot (c+d x)}}\)

\(\Big \downarrow \) 3208

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \tan (c+d x)}}dx}{a}-\frac {b \sqrt {\sin (c+d x)} \int \frac {\sqrt {-\cos (c+d x)}}{(b+a \cos (c+d x)) \sqrt {\sin (c+d x)}}dx}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \tan (c+d x)}}dx}{a}-\frac {b \sqrt {\sin (c+d x)} \int \frac {\sqrt {\sin \left (c+d x-\frac {\pi }{2}\right )}}{\sqrt {\cos \left (c+d x-\frac {\pi }{2}\right )} \left (b-a \sin \left (c+d x-\frac {\pi }{2}\right )\right )}dx}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 3386

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \tan (c+d x)}}dx}{a}-\frac {b \sqrt {\sin (c+d x)} \left (\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \int -\frac {1}{\sqrt {1-\frac {\cos ^2(c+d x)}{(\sin (c+d x)+1)^2}} \left (a-\sqrt {a^2-b^2}+\frac {b \cos (c+d x)}{\sin (c+d x)+1}\right )}d\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}}{d}+\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \int -\frac {1}{\sqrt {1-\frac {\cos ^2(c+d x)}{(\sin (c+d x)+1)^2}} \left (a+\sqrt {a^2-b^2}+\frac {b \cos (c+d x)}{\sin (c+d x)+1}\right )}d\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}}{d}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \tan (c+d x)}}dx}{a}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \int \frac {1}{\sqrt {1-\frac {\cos ^2(c+d x)}{(\sin (c+d x)+1)^2}} \left (a-\sqrt {a^2-b^2}+\frac {b \cos (c+d x)}{\sin (c+d x)+1}\right )}d\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}}{d}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \int \frac {1}{\sqrt {1-\frac {\cos ^2(c+d x)}{(\sin (c+d x)+1)^2}} \left (a+\sqrt {a^2-b^2}+\frac {b \cos (c+d x)}{\sin (c+d x)+1}\right )}d\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}}{d}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 1537

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \tan (c+d x)}}dx}{a}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \int \frac {1}{\sqrt {1-\frac {\cos (c+d x)}{\sin (c+d x)+1}} \sqrt {\frac {\cos (c+d x)}{\sin (c+d x)+1}+1} \left (a-\sqrt {a^2-b^2}+\frac {b \cos (c+d x)}{\sin (c+d x)+1}\right )}d\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}}{d}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \int \frac {1}{\sqrt {1-\frac {\cos (c+d x)}{\sin (c+d x)+1}} \sqrt {\frac {\cos (c+d x)}{\sin (c+d x)+1}+1} \left (a+\sqrt {a^2-b^2}+\frac {b \cos (c+d x)}{\sin (c+d x)+1}\right )}d\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}}{d}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 412

\(\displaystyle \frac {\int \frac {1}{\sqrt {e \tan (c+d x)}}dx}{a}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {e \int \frac {1}{\sqrt {e \tan (c+d x)} \left (\tan ^2(c+d x) e^2+e^2\right )}d(e \tan (c+d x))}{a d}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 e \int \frac {1}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{a d}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {2 e \left (\frac {\int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{2 e}+\frac {\int \frac {e^2 \tan ^2(c+d x)+e}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{2 e}\right )}{a d}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 e \left (\frac {\frac {1}{2} \int \frac {1}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}+\frac {1}{2} \int \frac {1}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 e}+\frac {\int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{2 e}\right )}{a d}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 e \left (\frac {\frac {\int \frac {1}{-e^2 \tan ^2(c+d x)-1}d\left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}-\frac {\int \frac {1}{-e^2 \tan ^2(c+d x)-1}d\left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}}{2 e}+\frac {\int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{2 e}\right )}{a d}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 e \left (\frac {\int \frac {e-e^2 \tan ^2(c+d x)}{e^4 \tan ^4(c+d x)+e^2}d\sqrt {e \tan (c+d x)}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{a d}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 e \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{a d}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 e \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}\right )}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{a d}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 e \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {e}-2 \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)-\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {2} \sqrt {e}}+\frac {\int \frac {\sqrt {e}+\sqrt {2} \sqrt {e \tan (c+d x)}}{e^2 \tan ^2(c+d x)+\sqrt {2} e^{3/2} \tan (c+d x)+e}d\sqrt {e \tan (c+d x)}}{2 \sqrt {e}}}{2 e}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}\right )}{a d}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 e \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {e} \tan (c+d x)+1\right )}{\sqrt {2} \sqrt {e}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {e} \tan (c+d x)\right )}{\sqrt {2} \sqrt {e}}}{2 e}+\frac {\frac {\log \left (\sqrt {2} e^{3/2} \tan (c+d x)+e^2 \tan ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}-\frac {\log \left (-\sqrt {2} e^{3/2} \tan (c+d x)+e^2 \tan ^2(c+d x)+e\right )}{2 \sqrt {2} \sqrt {e}}}{2 e}\right )}{a d}-\frac {b \sqrt {\sin (c+d x)} \left (-\frac {2 \sqrt {2} \left (1-\frac {a}{\sqrt {a^2-b^2}}\right ) \operatorname {EllipticPi}\left (\frac {b}{a-\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (a-\sqrt {a^2-b^2}\right )}-\frac {2 \sqrt {2} \left (\frac {a}{\sqrt {a^2-b^2}}+1\right ) \operatorname {EllipticPi}\left (\frac {b}{a+\sqrt {a^2-b^2}},\arcsin \left (\frac {\sqrt {-\cos (c+d x)}}{\sqrt {\sin (c+d x)+1}}\right ),-1\right )}{d \left (\sqrt {a^2-b^2}+a\right )}\right )}{a \sqrt {-\cos (c+d x)} \sqrt {e \tan (c+d x)}}\)

input
Int[1/((a + b*Sec[c + d*x])*Sqrt[e*Tan[c + d*x]]),x]
 
output
(2*e*((-(ArcTan[1 - Sqrt[2]*Sqrt[e]*Tan[c + d*x]]/(Sqrt[2]*Sqrt[e])) + Arc 
Tan[1 + Sqrt[2]*Sqrt[e]*Tan[c + d*x]]/(Sqrt[2]*Sqrt[e]))/(2*e) + (-1/2*Log 
[e - Sqrt[2]*e^(3/2)*Tan[c + d*x] + e^2*Tan[c + d*x]^2]/(Sqrt[2]*Sqrt[e]) 
+ Log[e + Sqrt[2]*e^(3/2)*Tan[c + d*x] + e^2*Tan[c + d*x]^2]/(2*Sqrt[2]*Sq 
rt[e]))/(2*e)))/(a*d) - (b*((-2*Sqrt[2]*(1 - a/Sqrt[a^2 - b^2])*EllipticPi 
[b/(a - Sqrt[a^2 - b^2]), ArcSin[Sqrt[-Cos[c + d*x]]/Sqrt[1 + Sin[c + d*x] 
]], -1])/((a - Sqrt[a^2 - b^2])*d) - (2*Sqrt[2]*(1 + a/Sqrt[a^2 - b^2])*El 
lipticPi[b/(a + Sqrt[a^2 - b^2]), ArcSin[Sqrt[-Cos[c + d*x]]/Sqrt[1 + Sin[ 
c + d*x]]], -1])/((a + Sqrt[a^2 - b^2])*d))*Sqrt[Sin[c + d*x]])/(a*Sqrt[-C 
os[c + d*x]]*Sqrt[e*Tan[c + d*x]])
 

3.4.15.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 412
Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x 
_)^2]), x_Symbol] :> Simp[(1/(a*Sqrt[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b* 
(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, 
 f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && S 
implerSqrtQ[-f/e, -d/c])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1537
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[ 
{q = Rt[(-a)*c, 2]}, Simp[Sqrt[-c]   Int[1/((d + e*x^2)*Sqrt[q + c*x^2]*Sqr 
t[q - c*x^2]), x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] & 
& GtQ[a, 0] && LtQ[c, 0]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3208
Int[Sqrt[(g_.)*tan[(e_.) + (f_.)*(x_)]]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_ 
)]), x_Symbol] :> Simp[Sqrt[Cos[e + f*x]]*(Sqrt[g*Tan[e + f*x]]/Sqrt[Sin[e 
+ f*x]])   Int[Sqrt[Sin[e + f*x]]/(Sqrt[Cos[e + f*x]]*(a + b*Sin[e + f*x])) 
, x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
 

rule 3212
Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_.), x_Symbol] :> Simp[g^(2*IntPart[p])*(g*Cot[e + f*x])^FracPart[p] 
*(g*Tan[e + f*x])^FracPart[p]   Int[(a + b*Sin[e + f*x])^m/(g*Tan[e + f*x]) 
^p, x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]
 

rule 3386
Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]]*((a_ 
) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[-a^2 + b^2, 
2]}, Simp[2*Sqrt[2]*d*((b + q)/(f*q))   Subst[Int[1/((d*(b + q) + a*x^2)*Sq 
rt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]], x] - 
 Simp[2*Sqrt[2]*d*((b - q)/(f*q))   Subst[Int[1/((d*(b - q) + a*x^2)*Sqrt[1 
 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]], x]] /; F 
reeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 

rule 4380
Int[1/(Sqrt[cot[(c_.) + (d_.)*(x_)]*(e_.)]*(csc[(c_.) + (d_.)*(x_)]*(b_.) + 
 (a_))), x_Symbol] :> Simp[1/a   Int[1/Sqrt[e*Cot[c + d*x]], x], x] - Simp[ 
b/a   Int[1/(Sqrt[e*Cot[c + d*x]]*(b + a*Sin[c + d*x])), x], x] /; FreeQ[{a 
, b, c, d, e}, x] && NeQ[a^2 - b^2, 0]
 
3.4.15.4 Maple [B] (warning: unable to verify)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 1918 vs. \(2 (343 ) = 686\).

Time = 3.58 (sec) , antiderivative size = 1919, normalized size of antiderivative = 4.55

method result size
default \(\text {Expression too large to display}\) \(1919\)

input
int(1/(a+b*sec(d*x+c))/(e*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 
output
1/2/d*2^(1/2)/((a^2-b^2)^(1/2)-a+b)/((a^2-b^2)^(1/2)+a-b)/(a^2-b^2)^(1/2)/ 
(a-b)/a*(3*I*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1 
/2))*(a^2-b^2)^(1/2)*a^2*b-3*I*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2), 
1/2-1/2*I,1/2*2^(1/2))*(a^2-b^2)^(1/2)*a*b^2-3*I*EllipticPi((csc(d*x+c)-co 
t(d*x+c)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2-b^2)^(1/2)*a^2*b+3*I*Ellipti 
cPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2-b^2)^(1/2) 
*a*b^2-3*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2)) 
*(a^2-b^2)^(1/2)*a*b^2+3*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2+1/ 
2*I,1/2*2^(1/2))*(a^2-b^2)^(1/2)*a^2*b-3*EllipticPi((csc(d*x+c)-cot(d*x+c) 
+1)^(1/2),1/2+1/2*I,1/2*2^(1/2))*(a^2-b^2)^(1/2)*a*b^2+2*(a^2-b^2)^(1/2)*E 
llipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),(a-b)/(a-b+((a-b)*(a+b))^(1/2)), 
1/2*2^(1/2))*a*b^2+2*(a^2-b^2)^(1/2)*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^ 
(1/2),-(a-b)/(-a+b+((a-b)*(a+b))^(1/2)),1/2*2^(1/2))*a*b^2-I*EllipticPi((c 
sc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2-b^2)^(3/2)*b-I*E 
llipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2-b^2) 
^(1/2)*a^3-I*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2+1/2*I,1/2*2^(1 
/2))*(a^2-b^2)^(3/2)*a-I*EllipticPi((csc(d*x+c)-cot(d*x+c)+1)^(1/2),1/2+1/ 
2*I,1/2*2^(1/2))*(a^2-b^2)^(1/2)*b^3+I*EllipticPi((csc(d*x+c)-cot(d*x+c)+1 
)^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2-b^2)^(3/2)*a+I*EllipticPi((csc(d*x+c)- 
cot(d*x+c)+1)^(1/2),1/2-1/2*I,1/2*2^(1/2))*(a^2-b^2)^(1/2)*b^3+I*Ellipt...
 
3.4.15.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\text {Timed out} \]

input
integrate(1/(a+b*sec(d*x+c))/(e*tan(d*x+c))^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.4.15.6 Sympy [F]

\[ \int \frac {1}{(a+b \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\int \frac {1}{\sqrt {e \tan {\left (c + d x \right )}} \left (a + b \sec {\left (c + d x \right )}\right )}\, dx \]

input
integrate(1/(a+b*sec(d*x+c))/(e*tan(d*x+c))**(1/2),x)
 
output
Integral(1/(sqrt(e*tan(c + d*x))*(a + b*sec(c + d*x))), x)
 
3.4.15.7 Maxima [F]

\[ \int \frac {1}{(a+b \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )} \sqrt {e \tan \left (d x + c\right )}} \,d x } \]

input
integrate(1/(a+b*sec(d*x+c))/(e*tan(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(1/((b*sec(d*x + c) + a)*sqrt(e*tan(d*x + c))), x)
 
3.4.15.8 Giac [F]

\[ \int \frac {1}{(a+b \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\int { \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )} \sqrt {e \tan \left (d x + c\right )}} \,d x } \]

input
integrate(1/(a+b*sec(d*x+c))/(e*tan(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(1/((b*sec(d*x + c) + a)*sqrt(e*tan(d*x + c))), x)
 
3.4.15.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+b \sec (c+d x)) \sqrt {e \tan (c+d x)}} \, dx=\int \frac {\cos \left (c+d\,x\right )}{\sqrt {e\,\mathrm {tan}\left (c+d\,x\right )}\,\left (b+a\,\cos \left (c+d\,x\right )\right )} \,d x \]

input
int(1/((e*tan(c + d*x))^(1/2)*(a + b/cos(c + d*x))),x)
 
output
int(cos(c + d*x)/((e*tan(c + d*x))^(1/2)*(b + a*cos(c + d*x))), x)